Control of a nonlinear active suspension system based on deep reinforcement learning and expert demonstrations
Zhao Tan,
Guilin Wen,
Zebang Pan
et al.
Abstract:A well-controlled active suspension system has the potential to provide better ride comfort. Benefiting from its powerful feature extraction and nonlinear generalization capabilities, the deep reinforcement learning (DRL), such as deep deterministic policy gradient (DDPG), has shown great potential to make decisions adaptively and intelligently in the control of active suspension system. However, the DDPG is troubled by the problem of low training efficiency due to the high proportion of illegal strategies. Th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.