IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society 2013
DOI: 10.1109/iecon.2013.6699678
|View full text |Cite
|
Sign up to set email alerts
|

Control of Antilock Braking System using Spiking Neural Networks

Abstract: Model-free approaches such as Artificial Neural Networks and Fuzzy Controllers are widely used in the control of Antilock Braking System (ABS) due to its strongly nonlinear structure and uncertainties involved. In this paper the design of a Spiking Neural Network (SNN) controller is considered for the regulation of the wheel slip value at its optimum value. For the training of the network a gradient descent based approach is followed. To formulate the generation of a new spike train from the incoming spikes, t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 15 publications
0
0
0
Order By: Relevance