2012 IEEE Fifth Power India Conference 2012
DOI: 10.1109/poweri.2012.6479508
|View full text |Cite
|
Sign up to set email alerts
|

Control of DSTATCOM using adjustable step least mean square control algorithm

Abstract: A DSTATCOM (Distribution Static Compensator) using an adjustable step least mean square (LMS) control algorithm is presented for power quality improvement under linear/nonlinear loads. Adjustable step LMS control algorithm is used for calculation of reference signal source currents in terms of average weighted active and reactive components/elements. It reduces the effect of nonlinearity by updating the value of step size. It is able to solve the problem at fast convergence rate and steady state error compared… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2014
2014
2024
2024

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 19 publications
(4 citation statements)
references
References 9 publications
0
2
0
2
Order By: Relevance
“…Arya et al ., [122] proposed a NN based Anti‐Hebbian control algorithm for PQ improvement under linear/non‐linear type consumer loads which is used for extraction of fundamental active and reactive power components of load currents in terms of weighted signals. Reference [123] used a NN based adjustable step least mean square (LMS) for signal extraction. It uses autocorrelation time mean estimate error signal for updating the step size in place of simple error signal. (xi) Back propagation (BP) based theory: BP algorithm includes three steps namely, the feed‐forward of the input signal training, calculation and BP of the error signals, and upgrading of training weights.…”
Section: Classification Of Dstatcoms Based On Control Techniquesmentioning
confidence: 99%
“…Arya et al ., [122] proposed a NN based Anti‐Hebbian control algorithm for PQ improvement under linear/non‐linear type consumer loads which is used for extraction of fundamental active and reactive power components of load currents in terms of weighted signals. Reference [123] used a NN based adjustable step least mean square (LMS) for signal extraction. It uses autocorrelation time mean estimate error signal for updating the step size in place of simple error signal. (xi) Back propagation (BP) based theory: BP algorithm includes three steps namely, the feed‐forward of the input signal training, calculation and BP of the error signals, and upgrading of training weights.…”
Section: Classification Of Dstatcoms Based On Control Techniquesmentioning
confidence: 99%
“…DSTATKOM'un sisteme verdiği veya sistemden aldığı aktif güç miktarı, DSTATKOM sistemlerinin kontrolündeki en önemli işlemlerden biri olan kompanzasyon sinyalleri genelde zaman ya da frekans ortamında üretilir. Ani gerilim ve/veya akım vektörlerinin zaman alanı sinyalleri algılanır ve bu sinyaller d-q eş zamanlı dönen eksen dönüşümü [20], [25], [28], [33], [38]- [40], [65] ve pq [14], [21], [29], [30], [34], [36], [43], [44], [48] [46]. Doğrusal olmayan denetleyicilerde ise histeresis kontrol [38], [55], [56], [63], yapay sinir ağları [32], bulanık mantık [34], admittans tabanlı algoritmalar [36], serbest-model bazlı kestirimci [31], kayan kip [54] [98], Lyapunov fonksiyon [99], melez uyarlamalı bulanık mantık tabanlı histeresis [103], yüksek dereceli tekrarlanan [104], bulanık mantık tabanlı [90], [106], tekrarlanan öğrenme tabanlı geniş bant [100] ve değişken örnekleme frekanslı tekrarlanan öğrenme [108] kontrol yöntemleri kullanılmaktadır.…”
Section: Cosunclassified
“…Literatürde, son yıllarda D-STATKOM ile ilgili çalışmaların sayısı artmış olup, kontrolcüsü zaman veya frekans düzleminde referans sinyalleri üretilerek kompanzasyonu gerçekleştirmektedir. Örnek olarak ani gerilim ve/veya akım vektörlerinin zamana bağlı sinyalleri algılanır ve bu sinyaller DQ Dönüşümü [1][2][3][4], PQ Dönüşümü [5][6][7], geri yayılım [8], karma gözlemci tabanlı [9], vektör kuantalamalı öğrenme [10], uyarlamalı eş-zamanlı referans çıkarma [11][12], yapay sinir ağları tabanlı Anti-Hebbian algoritması [13], üçgen fonksiyon karakteri [14], ayarlanabilir adımlı en küçük kareler [15], Adaline yapay sinir ağları [16] …”
Section: Gi̇ri̇ş (Introduction)unclassified