Determination of frictional condition of the running surface and side surface of the top of rail (lubrication) that ensures the best interaction of the rolling stock wheels and the rail, reduces the force action and thus ensures the track stability and reduced side wear of rails in the curved tracks is relevant for all the rail net.The objective of research is to determine the influence of frictional condition of the track rail surfaces on the interaction forces in the “wheel/rail” contact with various motion parameters (speed, radius).The theoretical and experimental methods were used in the research. The theoretical methods include multioptional computer modelling of axial and lateral forces that appear in the curved tracks during the freight train movement in the software package “Universal Mechanism”. The modelling results were processed with the use of correlation and regression analysis. The experimental methods include full-scale measurements in the existing track and results processing.According to the research results, the theoretical algorithms for assessment of influence of the running surface lubrication on the forces. The option of frictional condition of the wheel and rail interaction surfaces has been established to ensure reduction in the operating expenses for surfacing and rail replacement, energy costs for haulage of freight train.