Proceedings of the 41st SICE Annual Conference. SICE 2002.
DOI: 10.1109/sice.2002.1196529
|View full text |Cite
|
Sign up to set email alerts
|

Control of hyper-redundant robot using QDSEGA

Abstract: We consider a flexible autonomous system. To realize the system, we employ H?.per-rednndant system (It is flexible hardware systm) and Reinforcement learning controller "QDSEGA'; (It is a flexible software system). In this paper we apply QDSEGA to controlling of Hyper-redundant robot. To demonstrate the effectiveness, a task of acquisition of lmoniotion patterns is applied to a niulti-legged format.ioii and a snakelike formation, as a result effective locomotion hss been obtained.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 6 publications
0
1
0
1
Order By: Relevance
“…в интеграции с другими известными методами машинного обучения (Reinforcement Learning, нейронные сети и др.) [7,8,[11][12][13]17,18]. Однако эволюционные методы имеют серьезные ограничения, связанные с необходимостью наличия популяции роботов, что не позволяет проводить обучение и адаптацию в режиме реальной работы [14].…”
Section: Introductionunclassified
“…в интеграции с другими известными методами машинного обучения (Reinforcement Learning, нейронные сети и др.) [7,8,[11][12][13]17,18]. Однако эволюционные методы имеют серьезные ограничения, связанные с необходимостью наличия популяции роботов, что не позволяет проводить обучение и адаптацию в режиме реальной работы [14].…”
Section: Introductionunclassified
“…Many researches have been done on tube scanner errors caused by piezoceramics intrinsic characteristics such as nonlinearity and hysteresis, and various calibration and nonlinearity correction methods have also been proposed [6][7][8][9]. Some models mainly to investigate scanner dynamics have also been proposed, e.g., a complex dynamic model considering the coupling between motions in different axes has been presented in Ref.…”
Section: Introductionmentioning
confidence: 99%