Mycoplasma spp., sterol and fatty acid auxotrophs, are conventionally grown in complex media containing high concentrations of serum. Serum supplies the required lipids, but its presence complicates studies on the metabolism and antigenicity of mycoplasmas as well as the membrane dynamics of these organisms. In the present work, fetal bovine serum was replaced with dilipidated albumin and liposomes containing high concentrations of cholesterol. The liposomes were produced from phosphatidylcholine which contained other lipid species, including phosphatidylethanolamine, phosphatidylglycerol, and cholesterol. Other liposomes containing cholesterol and one phospholipid yielded significantly less growth of Mycoplasma gallisepticum, indicating that several phospholipids are required to achieve growth levels comparable to those obtained with complex medium. The sources and concentrations of cholesterol, albumin, phosphatidylcholine, and other phospholipids and the interactions among them were important affectors of mycoplasmal growth. Optimal lipid and albumin conditions established for M. gaUlisepticum were then used to propagate five diverse Mycoplasma spp. to growth levels which equalled or surpassed those obtained with medium containing 17% fetal bovine serum.