Arrays of memristive devices coupled with photosensors can be used for capturing and processing visual information, thereby realizing the concept of “in-sensor computing”. This is a promising concept associated with the development of compact and low-power machine vision devices, which is crucial important for bionic prostheses of eyes, on-board image recognition systems for unmanned vehicles, computer vision in robotics, etc. This concept can be applied for the creation of a memristor based neuromorphic analog machine vision systems, and here, we propose a new architecture for these systems in which captured visual data are fed to a spiking artificial neural network (SNN) based on memristive devices without analog-to-digital and digital-to-analog conversions. Such an approach opens up the opportunities of creating more compact, energy-efficient visual processing units for wearable, on-board, and embedded electronics for such areas as robotics, the Internet of Things, and neuroprosthetics, as well as other practical applications in the field of artificial intelligence.