Meat and meat products are perishable in nature, and easily susceptible to microbial contamination and chemical deterioration. This not only results in an increased risk to health of consumers, but also causes economic loss to the meat industry. Some microorganisms of the lactic acid bacteria (LAB) group and their ribosomal-synthesized antimicrobial peptides—especially bacteriocins—can be used as a natural preservative, and an alternative to chemical preservatives in meat industry. Purified or partially purified bacteriocins can be used as a food additive or incorporated in active packaging, while bacteriocin-producing cells could be added as starter or protective cultures for fermented meats. Large-scale applications of bacteriocins are limited, however, mainly due to the narrow antimicrobial spectrum and varying stability in different food matrixes. To overcome these limitations, bioengineering and biotechnological techniques are being employed to combine two or more classes of bacteriocins and develop novel bacteriocins with high efficacy. These approaches, in combination with hurdle concepts (active packaging), provide adequate safety by reducing the pathogenicity of spoilage microorganisms, improving sensory characteristics (e.g., desirable flavor, texture, aroma) and enhancing the shelf life of meat-based products. In this review, the biosynthesis of different classes of LAB bacteriocins, their mechanism of action and their role in the preservation of meats and meat products are reviewed.