Advancements in light engineering have led to the creation of pulsed laser sources capable of delivering high-repetition-rate, high-power few-cycle laser pulses across a wide spectral range, enabling exploration of many fascinating nonlinear processes occurring in all states of matter. High-harmonic generation, one such process, which converts the low-frequency photons of the driver laser field into soft x-rays, has revolutionized atomic, molecular, and optical physics, leading to progress in attosecond science and ultrafast optoelectronics. The Extreme Light Infrastructure, Attosecond Light Pulse Source (ELI ALPS) facility pioneers state-of-the-art tools for research in these areas. This paper outlines the design rationale, capabilities, and applications of plasma- and gas-based high-repetition-rate (1 kHz to 100 kHz) attosecond extreme ultraviolet (XUV) beamlines developed at ELI ALPS, highlighting their potential for advancing various research fields.