“…Stator current, voltage, and back electromotive force (EMF) or flux are typical estimation parameters [ 9 , 10 ]. The first technique depends on machine model comprising the Model Reference Adaptive System (MRAS) [11] , [12] , [13] , [14] , Extended Kalman Filtering approaches (EKF) [15] , [16] , [17] , [18] , [19] , [20] , [21] , [22] , [23] , [24] , Speed Estimators (SE) [25] , [26] , [27] , [28] , Sliding Mode Observer (SMO) [ 26 , [29] , [30] , [31] , [32] , [33] , [34] , [35] , [36] ], reduced order nonlinear observer [ 23 , [36] , [37] , [38] ], Artificial Intelligence methods (AI) [39] , [40] , [41] , [42] , [43] , Direct calculation and Adaptive observers [44] , [45] , [46] , [47] , [48] . These techniques use motor mathematical models that makes use of stator current and voltage measurements and the motor model to estimate rotor speed.…”