In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize, termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB occurs in a predictable range of velocities.