Renewable energy resources require energy storage techniques to curb problems with intermittency. One potential solution is the use of phase change materials (PCMs) in latent heat thermal energy storage (LHTES) systems. Despite the high energy storage density of PCMs, their thermal response rate is restricted by low thermal conductivity. The topic of heat transfer enhancement techniques for increasing thermal performance of LHTES systems has mainly focused on passive heat transfer enhancement techniques with less attention towards active methods. Active heat transfer enhancement techniques require external power supplied to the system. In this paper, recent advances in active heat transfer enhancement techniques within LHTES systems are reviewed, including mechanical aids, vibration, jet impingement, injection, and external fields. The pertinent findings related to the field are summarized in relation to the charging and discharging processes of PCMs. Suggestions for future research are proposed, and the importance of additional energy input for storage is discussed.