The capture of CO2 under high pressure and temperature is challenging and is required in a number for industrial applications including natural gas processing. In this work, we examine the use of benchmark hybrid ultraporous materials HUMs for their potential use in CO2 adsorption processes under high-pressure conditions, with three varying temperatures (283, 298 and 318 K). NbOFFOVE-1-Ni and SIFSIX-3-Ni were the selected HUMs given their established superior CO2 capacity under low pressure (0–1 bar). Both are microporous with highly ordered crystalline structures as compared to the mesoporous hexagonal silica (Santa Barbara Anhydrous-15 (SBA-15)). SBA-15 was previously tested for both low and high-pressure applications and can serve as a benchmark in this study. Sorbent characterization using XRD, SEM, FTIR and N2 adsorption were conducted to assure the purity and structure of the sorbents. TGA analysis were conducted to establish the thermal stability of the sorbents under various temperatures. High-pressure CO2 adsorption was conducted from 0–35 bar using magnetic suspension balance (Rubotherm). Although the SBA-15 had the highest surface (527 m3/g) are of the three adsorbents, the CO2 adsorption capacity (0.42 mmol/g) was an order of magnitude less than the studies HUMs with SIFSIX-3-Ni having 2.6 mmol/g, NbOFFIVE-1-Ni achieving 2.5 mmol/g at 298 K. Multistage adsorption isotherms were obtained at different pressures. In addition, results indicate that electrostatics in HUMs are most effective at improving isosteric heat of adsorption Qst and CO2 uptake. Higher temperatures had negative effect on adsorption capacity for the HUMs and SBA-15 at pressures between 7–9 bar. In SAB-15 the effect of temperature is reversed in what is known as a cross over phenomena.