This paper reports the modeling and dynamic performance of a wind penetrated multi-area power system incorporating a Singular Virtual Synchronous Generator (SVSG)/Distributed Virtual Synchronous Generator (DVSG). The active and reactive power controls are achieved by using Superconducting Magnetic Energy Storage (SMES) as Virtual Synchronous Generator (VSG). SMES based VSG control parameters are tuned offline using genetic algorithm (GA). Two topologies of VSGs are considered in this paper: SVSG at lowest inertia generator bus (SVSGGENBUS), SVSG at load bus (SVSGLOADBUS) and DVSG of comparatively smaller rating at three lowest inertia generator buses. A modified 18 machine, 70-bus power system is simulated in MATLAB/Simulink environment. System performance is assessed for two different types of disturbances: step wind disturbance and three-phase fault. The simulation results show that rate of change of frequency (ROCOF), deviations in frequency and voltage are minimized with DVSG. Transient stability measured in terms of critical clearing time (CCT) verifies that CCT is increased by DVSG topology.