The world's energy consumption and power generation demand will continue to rise. Furthermore, the bulk of the energy resources needed to satisfy the rising demand is far from the load centers. The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current (HVDC) transmission systems. The main technical issues for HVDC transmission systems are loss of synchronism, variation of quadrature currents, amplitude, the inability of station 1 (rectifier), and station 2 (inverter) to either inject, or absorb active, or reactive power in the network in any circumstances (before a fault occurs, during having a fault in network and after a fault cleared), and the variations of power transfer capabilities. Additionally, faults impact power quality such as voltage dips and power line outage time. This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter (VSC) based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator. The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities. Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software. The results indicate that the station's rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance. Also, the reverse power flow under different modes of operation can ride through faults. At a 100.0% power transfer rate, the rectifier injected 775.0 W into the network. At a 0.0% power transfer rate, the rectifier injected 164.0 W into the network. At a −100.0% rated power, the rectifier injected 1264.0 W into the network and direction was also changed.