Western China has good conditions for constructing large-scale photovoltaic (PV) power stations; however, such power plants with large fluctuations and strong randomness suffer from the long-distance power transmission problem, which needs to be solved. For large-scale PV power stations that do not have the conditions for simultaneous hydropower and PV power, this study examined long-distance delivery mode and energy storage optimization. The objective was to realize the long-distance transmission of electrical energy and maximize the economic value of the energy storage and PV power storage. For a large-scale PV power station, the energy storage optimization was modelled under a given long-distance delivery mode, and the economic evaluation system quantified using the net present value (NPV) of the battery was based on the energy dispatch optimization model. By contrast, a lithium battery performance model was developed. Therefore, further analysis of the economics of the energy storage and obtaining the best capacity of the energy storage battery and corresponding replacement cycle considered battery degradation. The case study of Qinghai Gonghe 100 MWp demonstration base PV power station showed that the optimal energy storage capacity was 5 MWh, and the optimal replacement period was 2 years. Therefore, the annual abandoned electricity was reduced by 3.051 × 10 4 MWh compared with no energy storage. The utilization rate of both the PV power station and quality of the delivered electricity were modelled to realize a long-distance transmission to the grid net. This will have an important guiding significance to develop and construct large-scale single PV power stations.