In this study, three strategies based on infinitedimensional Floquet theory, Chebyshev spectral collocation, and the Lyapunov-Floquet transformation (LFT) are proposed for optimal feedback control of linear time periodic delay differential equations using periodic control gains. First, a periodic-gain discrete-delayed feedback control is implemented where optimization of the control gains is included to obtain the minimum spectral radius of the closedloop response. Second, a large set of ODEs is obtained using the Chebyshev spectral continuous time approximation, after which optimal (time-varying LQR) control is used to obtain a periodic-gain distributed-delayed feedback control. The third strategy involves the use of both CSCTA and the reduced LFT, along with either pole-placement or time-invariant LQR used on a linear time invariant auxiliary system, to obtain a periodic-gain non-delayed feedback control that asymptotically stabilizes the original system. The delayed Mathieu equation is used as an illustrative example for all three control strategies.