In recent years, space debris problems have become very serious. The worst case occurs in the low Earth orbit (LEO) region, where debris-to-debris collisions generate new debris. The situation in the geostationary orbit (GEO) region is not as bad as that in the LEO. The debris problem in the GEO region, however, should not be left as it is because the GEO is unique and has few debris-cleansing modes. Thus, we proposed a concept for a reorbiter to reorbit large GEO debris objects such as satellites and rocket upper stages left in orbit after the ends of their missions. This concept is based on the idea of thrusting a debris object by irradiating it with an ion beam. The reorbiter, equipped with two ion engines, approaches a debris object, and the ion beam exhausted from one of the ion engines irradiates and thrusts it to change its orbit. The other engine on the opposite side is operated so that the reorbiter follows the debris object. Their orbits are raised in a spiral to a disposal orbit approximately 300 km higher. After that, the reorbiter returns to GEO to approach another debris object. This system can operate without catching debris objects; thus, it can be applied to a wide range of debris objects without regard to their shapes or rotations. A mission scenario was made to conduct efficient maneuvers. In the GEO region, a number of debris objects are distributed on orbit planes close to each other, and they can be reorbited one after another using a single reorbiter. For a typical model mission, the mission time and the total impulse of the ion engines were calculated. The results show that six debris objects can be reorbited in 170 days. The reorbiter has a targeted launch mass of 2500 kg and 6.9 kW of total power. The ion beam convergence, the effects of ion beam irradiation, and non-cooperative rendezvous were recognized as the critical issues of this system. A highly converged beam is required to make efficient debris irradiation. Numerical calculations and basic experiments gave a feasibility of the required irradiation efficiency of over 25%. The irradiation of debris objects may cause sputtering of their surfaces and depositions of the back-sputtered materials on the reorbiter surface. The data were obtained experimentally to evaluate the effects of the depositions, especially on solar cells. The results indicated no serious contamination problems. Preliminary studies were conducted on the approach to an uncollaborative object and the maintenance of the separation distance.