2008
DOI: 10.1590/s0103-17592008000300003
|View full text |Cite
|
Sign up to set email alerts
|

Controle ótimo H∞ de sistemas não-lineares com modelos fuzzy takagi-sugeno

Abstract: A design method for tracking system with disturbance rejection applied to nonlinear systems using fuzzy control is proposed in this paper. Fuzzy feedforward controllers M (α) and N (α) are designed in order to obtain the tracking system. These controllers minimize the H ∞ -norm from the reference input signal r(t) to the tracking error signal e(t), where the tracking error signal is the difference between the reference input signal r(t) and the output signal z(t). A dynamic feedback fuzzy controller K c (α) is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
4

Year Published

2012
2012
2018
2018

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(12 citation statements)
references
References 15 publications
0
8
0
4
Order By: Relevance
“…A new representation of (30) can be obtained with the definition (34). Determining the new equations from (30), (32)- (34), defining x 2n (t) = x 2 (t) and x 3n (t) = x 3 (t), one has: Results reported in [5].…”
Section: Regulator Design With Trackingmentioning
confidence: 99%
See 3 more Smart Citations
“…A new representation of (30) can be obtained with the definition (34). Determining the new equations from (30), (32)- (34), defining x 2n (t) = x 2 (t) and x 3n (t) = x 3 (t), one has: Results reported in [5].…”
Section: Regulator Design With Trackingmentioning
confidence: 99%
“…Determining the new equations from (30), (32)- (34), defining x 2n (t) = x 2 (t) and x 3n (t) = x 3 (t), one has: Results reported in [5]. The following equationing, based on (35), exists if and only if: Fig.…”
Section: Regulator Design With Trackingmentioning
confidence: 99%
See 2 more Smart Citations
“…Do ponto de vista prático, diversas aplicações têm sido reportadas na literatura e, em particular, a utilização da modelagem fuzzy de Takagi-Sugeno (Wang et al, 1996) apresenta-se como umaárea interessante para a aplicação de técnicas de controle LPV e, também, para o desenvolvimento de novos resultados teóricos (p.ex. : Guerra and Vermeiren, 2004;Khiar et al, 2007;Andrea et al, 2008;Tognetti et al, 2009;Montagner et al, 2010;Zheng et al, 2001;Zhou et al, 2007). Na representação fuzzy de Takagi-Sugeno (T-S) o parâmetro variante consiste em funções peso normalizadas, geralmente dependente dos estados do sistema, que controlam a interpolação entre os modelos locais (regras).…”
Section: Introductionunclassified