We show the local null-controllability of a fluid-structure interaction system coupling a viscous incompressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary small parts of the fluid domain and of the beam domain. In order to show the result, we first use a change of variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in a cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result on the nonlinear system is obtained by a fixed-point argument.