Heterointerfaces may exhibit unexpected physical properties distinct from intrinsic properties of component materials. In particular, metal–organic interfaces can drive unique interfacial spin moments, which are often called molecular spinterface. Here, van der Waals stacking of molecular layers may lead to variations in the intra/interlayer exchange coupling resulting in multiple ground states, which is highly desired for multifunctional magnetic devices. In this report, the emergence of molecular multispinterface of paramagnetic cobalt‐octaethyl‐porphyrin (CoOEP) layers in a Fe/CoOEP heterostructure is demonstrated through the interfacial layer and a successive antiferromagnetic molecular spin chain. The disentangled interfacial ferromagnetic spins lead to multiple magnetic ground states and behave as additional spin‐dependent scattering centers, as evidenced through the magnetotransport study. In addition, the antiferromagnetic molecule spin chain derives tunable exchange bias, which signifies the dominance of the antiferromagnetic interfacial interaction. Theoretical calculations demonstrate spin configurations of the molecular chain and the antiferromagnetic interfacial coupling through oxygen intermediaries. The development of the molecular multispinterface and controllable exchange bias therein will provide a promising route for the active control of multivalued data processing at the nanoscale.