Cationic photopolymerization has become increasingly important in thin-film applications for advantages including no oxygen inhibition and rapid polymerization rates. Photocurable cationic thin film properties are often modulated by incorporation of oligomeric and prepolymer materials, but little work has directly examined the effect of prepolymer structure and reactive group placement on the thermomechanical properties of the final material. To explore the role of molecular architecture, epoxy functionalized butyl acrylate gradient copolymers were synthesized with reactive groups in end segments or randomly distributed along the prepolymer chain. Polymerized end functionalized formulations exhibit moduli almost double that of random functionalized oligomer formulations. In addition, inclusion of end functionalized prepolymers decreases creep of resulting thin films by a factor of 10. Furthermore, decreasing the concentration of the cross-linking diluent in end functionalized prepolymer systems results in amorphous networks with significantly lower mechanical strength. Increasing reactive groups at the ends of prepolymers produces stronger materials without affecting tensile elongation at break. These properties indicate that the structured oligomers facilitate the formation of continuous hard domains with high cross-link density with inclusions of soft, flexible domains of low cross-link density. This study demonstrates that the prepolymer architecture governs network formation and ultimate properties. V C 2016 Wiley Periodicals, Inc. J.