The designability, functionalization, and diverse secondary structures of DNA enable the construction of DNA motors with stimuli-responsiveness. Therefore, it has been widely used to fabricate functional systems or generate mechanical power under external stimuli, such as pH, light, heat, electrical, and chemical molecular signals. Furthermore, the DNA motor has also been demonstrated to promote the applications of smart devices and materials, particularly in controllable drug delivery and reversible molecular switching. In this review, we have summarized and discussed recent progress of the construction and applications of DNA motor-based functional systems, such as responsive nanodevices, modified surfaces, and hydrogels.