We present a new approach to Morse and Novikov theories, based on the deRham Federer theory of currents, using the finite volume flow technique of Harvey and Lawson [HL]. In the Morse case, we construct a noncompact analogue of the Morse complex, relating a Morse function to the cohomology with compact forward supports of the manifold. This complex is then used in Novikov theory, to obtain a geometric realization of the Novikov Complex as a complex of currents and a new characterization of Novikov Homology as cohomology with compact forward supports. Two natural "backward-forward" dualities are also established: a Lambda duality over the Novikov Ring and a Topological Vector Space duality over the reals.