Countercurrent distribution based on liquid-liquid partition is a powerful separation method with minimal incurrence of loss of solutes, but its industrial application has been limited by cumbersome shifting of immiscible solvents. Although centrifugation has been employed to facilitate equilibration between phases, process scaling-up remains difficult. In this study, a dispersed mobile-phase countercurrent chromatography (DMCC) method has been developed to adapt the countercurrent distribution principle to a continuous column chromatography format. Continuous solute exchange between two immiscible phases within a series of separation columns is achieved by mechanical dispersion of an influx of mobile phase into an upward stream of small droplets travelling through the columns filled with stationary phase. The diameter, length, and number of columns, and the number of stationary phases employed in the different columns can be varied to match the requisite scale and resolution of operation. Illustrations of DMCC were provided by examples of solute separations where the fractionated solutes could be collected either from the eluate of the series of columns, or from drainage of the stationary phases in the individual columns at the end of a chromatographic run.