In this paper, we first introduce the notion of controlled weaving K-g-frames in Hilbert spaces. Then, we present sufficient conditions for controlled weaving K-g-frames in separable Hilbert spaces. Also, a characterization of controlled weaving K-g-frames is given in terms of an operator. Finally, we show that if bounds of frames associated with atomic spaces are positively confined, then controlled K-g-woven frames gives ordinary weaving K-frames and vice-versa.