The possibility of wastewater treatment and electricity production using a microbial fuel cell with Cu–B alloy as the cathode catalyst is presented in this paper. Our research covered the catalyst preparation; measurements of the electroless potential of electrodes with the Cu–B catalyst, measurements of the influence of anodic charge on the catalytic activity of the Cu–B alloy, electricity production in a microbial fuel cell (with a Cu–B cathode), and a comparison of changes in the concentration of chemical oxygen demand (COD), NH4+, and NO3– in three reactors: one excluding aeration, one with aeration, and during microbial fuel cell operation (with a Cu–B cathode). During the experiments, electricity production equal to 0.21–0.35 mA·cm−2 was obtained. The use of a microbial fuel cell (MFC) with Cu–B offers a similar reduction time for COD to that resulting from the application of aeration. The measured reduction of NH4+ was unchanged when compared with cases employing MFCs, and it was found that effectiveness of about 90% can be achieved for NO3– reduction. From the results of this study, we conclude that Cu–B can be employed to play the role of a cathode catalyst in applications of microbial fuel cells employed for wastewater treatment and the production of electricity.