In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50-150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15-30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15-30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m 3 ; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.