The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here, inspired by the structure of Buddha beads, which are generally composed of moveable beads strung on a rope, we present novel cell microcarriers with controllable macropores and heterogeneous microstructures by using a capillary array microfluidic technology. Microfibers with a string of moveable and releasable microcarriers could be achieved by an immediate gelation reaction of sodium alginate spinning and subsequent polymerization of cell-dispersed gelatin methacrylate emulsification. The sizes of the microcarriers and their inner macropores could be well tailored by adjusting the flow rates of the microfluidic phases; this was of great importance in guaranteeing a sufficient supply of nutrients during cell culture. In addition, by infusing multiple cell-dispersed pregel solutions into the capillaries, the microcarriers with spatially heterogeneous cell encapsulations for mimicking physiological structures and functions could also be achieved.