Abstract. The problem of synthesizing stabilizing state-feedback controllers is solved when the closed-loop system is required to remain positive, for the class of 2-D linear systems described by the Fornasini-Marchesini second model. First, a constructive necessary and sufficient condition expressed as a Linear Programming problem is provided for stabilization of these systems when the states must be nonnegative (assuming that the boundary conditions are nonnegative). It is shown how it is simple to include additional constraints (such as positive controls). Moreover, this result is also extended to include uncertainty in the model, making possible to synthesize robust state-feedback controllers, solving Linear Programming problems. Some numerical examples are included to illustrate the proposed approach for different design problems.