Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders during pregnancy, leading to serious complications for pregnant women and a threat to life safety of infants. Therefore, it is particularly important to establish a multipurpose monitoring pathway to important physiological indicators of pregnant women. In this work, three kinds of double network hydrogels are prepared with poly(vinyl alcohol) (PVA), borax, and cellulose ethers with varying substituents of methyl (methyl cellulose, MC), hydroxypropyl (hydroxypropyl cellulose, HPC), or both (hydroxypropyl methyl cellulose, HPMC), respectively. The corresponding toughness (143.9, 102.3, and 135.9 kJ cm −3 ) and conductivity (0.69, 0.45, and 0.51 S m −1 ) of the hydrogels demonstrate that PB-MC was endowed with the prominent performance. Molecular dynamics simulations further revealed the essence that hydrogen bond interactions between PVA and cellulose ethers play a critical role in regulating the structure and properties of hydrogels. Thermochromic capsule powders (TCPs) were subsequently doped in to achieve a composite hydrogel