The development of high performance human-machine interface systems for controlling robotic platforms by natural language is a relevant task in interdisciplinary field «Human-Robot Interaction». In particular, it is in demand, when the robotic platform is controlled by an operator without any skills necessary to use specialized control tools. The paper describes a complex Russian language commands processing into a formalized RDF graph format to control a robotic platform. In this processing, neural network models are consistently used to search and replace pronouns in commands, restore missing verbs-actions, decompose a complex command with several actions into simple commands with only one action and classify simple command attribute. State-of-the-art solutions are applied as neural network models in this work. It is language models based on deep neural networks transformer architecture. The previous our papers show synthetic datasets based on developed generator of Russian language text commands, data based on crowdsourcing technologies and data from open sources for each of the described stages of processing. These datasets were used to fine-tune the language models of the neural networks. In this work, the resulting fine-tuned language models are implemented into the interface. The impact of the stage of searching and replacing pronouns on the efficiency of command conversion are evaluated. Using the virtual three-dimensional robotic platform simulator created at the National Research Center «Kurchatov Institute», the high efficiency of complex Russian language commands processing as part of a human-machine interface system is demonstrated.