In the present work, the creep deformation behaviour of a new cast intermetallic Ti46Al8Ta [at.%] alloy is analysed. Constant load tensile creep tests were performed at initial applied stresses ranging from 200 to 400 MPa in the temperature range from 973 to 1073 K. The measured creep deformation curves are analysed and the observed deviations from calculated curves are discussed based on microstructural changes observed in the studied alloy during creep. The kinetics of creep deformation are evaluated in terms of the true activation energy for creep and the stress exponent. Creep damage initiation and propagation leading to the fracture of the creep specimens are characterized as functions of the applied stress and temperature.