Among other methods, inductively coupled plasma (ICP) torches can be used for the synthesis of nanoparticles. In this process, the precursor material is vaporized in the first step in the plasma core. In the second step, nucleation and condensation occur in the synthesis chamber where the plasma gets colder and high-purity nanoparticles are synthesized, the growth of which is stopped by gas quenching. From their low velocity and high temperature, induction plasmas are particularly adapted for this application. Numerical modeling is a good way to achieve a better knowledge and understanding of the process since non-intrusive diagnostics are fairly difficult to implement. In the present article, a twodimensional model of an ICP torch was developed and validated on the basis of comparisons with data obtained by some other authors. Finally, the current frequency (13.56 MHz), pressure level (0.04 MPa), and gas flow rates were adjusted for the specific conditions of nanoparticles synthesis.