2024
DOI: 10.1088/2632-2153/ad638f
|View full text |Cite
|
Sign up to set email alerts
|

Controlling optical-cavity locking using reinforcement learning

Edoardo Fazzari,
Hudson A Loughlin,
Chris Stoughton

Abstract: This study applies an effective methodology based on Reinforcement Learning (RL) to a control system. Using the Pound-Drever-Hall locking scheme, we match the wavelength of a controlled laser to the length of a Fabry-Pérot cavity such that the cavity length is an exact integer multiple of the laser wavelength. Typically, long-term drift of the cavity length and laser wavelength exceeds the dynamic range of this control if only the laser's piezoelectric transducer is actuated, so the same error signal also con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?