In this paper, we investigate the electromagnetic response of a Huygens' metasurface (HMS) embedded between the transmitter and receiver coils of a near field wireless power transfer (WPT) system and their interactions for the feasibility of increasing efficiency. To analyze the proposed configuration, we use the point-dipole approximation to describe the electromagnetic fields and boundary conditions governing HMS to calculate the mutual inductance between the coils and to obtain closed-form analytical expressions. The proposed theory shows that by optimally designing the HMS inclusions, the amplitude of the mutual inductance between the transmitter and receiver coils in the near-field WPT can be increased, resulting in improved efficiency. Finally, by drawing on the proposed theory, we design a thin layer and finite-size HMS consisting of 64 elements. The bianisotropic Omega-type particle is used to design the HMS to improve the efficiency of the sample WPT system at the frequency of 100 MHz. The results of the full-wave simulation show that the power transfer efficiency in the free space increases from 25% to 42% in the presence of the proposed HMS. INDEX TERMS Wireless power transfer, Huygens metasurfaces, power transfer efficiency.