Molecular compounds of the general formula [(RT) 4 E 6 ] (R = organic or organometallic substituent; T = C, Si, Ge, Sn; E = CH 2 , S, Se), hence adamantane derivatives and inorganic-organic hybrid compounds based on a heteroadamantane structure exhibit a non-linear optical response upon radiation with a continuous-wave near-infrared laser. The effect depends on the compounds' habitus, which itself depends on the elemental composition of the cluster core, and on the nature of the organic substituents. A combination of these parameters that cause the material to be intrinsically amorphous leads to supercontinuum generation and thus to the emission of a broad spectrum, potentially appearing as white light. Notably, the emission essentially retains the driving laser's directionality. For crystalline samples, second harmonic generation is observed instead, which points to a close relationship of the optical properties and the intermolecular order. Variation of R, T, and E allows further fine-tuning of the emitted spectra. We present all studies made in regards to these effects and our overarching conclusions derived from them.