Abstract. Variations in the δ(18O) of atmospheric O2, δatm(18O), is an indicator of biological and water processes associated with the Dole-Morita effect (DME). The DME and its variations have been observed in ice cores for paleoclimate studies, however, variations in present-day’s δatm(18O) have never been detected so far. Here, we present diurnal, seasonal, and interannual variations of δatm(18O) based on observations at a surface site in central Japan. The average diurnal δatm(18O) cycle reached a minimum during the daytime, and its amplitude was larger in summer than in winter. We found that use of δatm(18O) enabled separation of variations of atmospheric δ(O2/N2) into contributions from biological activities and fossil fuel combustion. The average seasonal δatm(18O) cycle reached at a minimum in summer, and the peak-to-peak amplitude was about 2 per meg. A box model that incorporated biological and water processes reproduced the general characteristics of the observed diurnal and seasonal cycles. A slight but significant secular increase of δatm(18O) by (0.22 ± 0.14) per meg a−1 occurred during 2013–2022. The box model could reproduce the secular trend if consideration was given to long-term changes of terrestrial gross primary production (GPP), photorespiration, and δ(18O) of leaf water (δLW(18O)). We calculated changes of δLW(18O) using a state-of-the-art, three-dimensional model, MIROC5-iso. A comparison between the observed and simulated δatm(18O) values suggested that there had been a recent increase of global GPP, a slight decrease of photorespiration, and an increase of carboxylation (total carbon fixation).