This article is the second part of the work under the same title, which is based on the results of the research presented in the previous article: “Numerical study of heat transfer intensification in a circular tube using a thin, radiation-absorbing insert. Part 1: Thermo-hydraulic characteristics”. Part 1 presents an analysis of pressure drops and heat transfer intensification in a round tube with an insert, using the phenomenon of radiation absorption. In this paper, an analysis of the tested insert’s thermal performance (PEC) is presented, taking into account the criterion of equal pumping power. The tests were carried out for the range of Re = 5000–100,000 numbers, for various insert diameters (from 20% to 90% of the pipe diameter) and a constant temperature difference between the wall and the gas ∆T = 100 °C. The highest Nu numbers were observed for inserts with dimensionless diameters of 0.3 and 0.4, while the highest flow resistance was observed for inserts with diameters of 0.6 and 0.7 of the channel diameter. The thermal efficiency was calculated in two ways, as was the associated Nu number. These results significantly differed from each other: the maximum PEC values for method (I) reached 2, and for method (II) to 8. The common feature for both calculation methods was the fact that the maximum values of the Nu number and the thermal efficiency were observed for small Re numbers; however, as the Re number increases, PEC and Nu number decrease strongly.