Glioblastoma heterogeneity and plasticity remain controversial, with proposed subtypes representing the average of highly heterogeneous admixtures of independent transcriptional states. Single-cell, protein-activity-based analysis allowed full quantification of >6,000 regulatory and signaling proteins, thus providing a previously unattainable single-cell characterization level. This helped identify four novel, molecularly distinct subtypes that successfully harmonize across multiple GBM datasets, including previously published bulk and single-cell profiles and single cell profiles from seven orthotopic PDX models, representative of prior subtype diversity. GBM is thus characterized by the plastic coexistence of single cells in two mutually-exclusive developmental lineages, with additional stratification provided by their proliferative potential. Consistently, all previous subtypes could be recapitulated by single-cell mixtures drawn from newly identified states. Critically, drug sensitivity was predicted and validated as highly state-dependent, both in single-cell assays from patient-derived explants and in PDX models, suggesting that successful treatment requires combinations of multiple drugs targeting these distinct tumor states.
Significance
We propose a new, 4-subtype GBM classification, which harmonizes across bulk and single-cell datasets. Single-cell mixtures from these subtypes effectively recapitulate all prior classifications, suggesting that the latter are a byproduct of GBM heterogeneity. Finally, we predict single-cell level activity of three clinically-relevant drugs, and validate them in patient-derived explant.