In the present study, the experimental set-up of Ganesh et al. (J. Fluid Mech., vol. 802, 2016, pp. 37–78) is used to examine the dynamics of a shedding cavity by examining the vapour production rate of the natural cavity and determining how minimal injection of non-condensable gas can substantially alter the vapour production rate, the resulting cavity flow and the cavity shedding process. The influence of the dissolved gas content on the shedding natural cavity flow is also examined. High-speed visual imaging and cinemagraphic X-ray densitometry were used to observe the void fraction dynamics of the cavity flow. Non-condensable gas is injected across the span of the cavity flow at two locations: immediately downstream of the cavity detachment location at the apex of the wedge or further downstream into mid-cavity. The gas injected near the apex is found to increase the pressure near the suction peak, which resulted in the suppression of vapour formation. Hence, the injection of gas could result in a substantial net reduction in the overall cavity void fraction. Injection at the mid-cavity did less to suppress the vapour production and resulted in less significant modification of both the mean cavity pressure and net volume fraction. Changes in the cavity void fraction, in turn, altered the dynamics of the bubbly shock formation. Variation of the dissolved gas content alone (i.e. without injection) did not significantly change the cavity dynamics.