Aquest treball està enmarcat en el context de gràfics per computador partint de la intersecció de tres camps: rendering, teoria de la informació, i complexitat.<br/><br/>Inicialment, el concepte de complexitat d'una escena es analitzat considerant tres perspectives des d'un punt de vista de la visibilitat geomètrica: complexitat en un punt interior, complexitat d'una animació, i complexitat d'una regió. L'enfoc principal d'aquesta tesi és l'exploració i desenvolupament de nous criteris de refinament pel problema de la il·luminació global. Mesures de la teoria de la informació basades en la entropia de Shannon i en la entropia generalitzada de Harvda-Charvát-Tsallis, conjuntament amb les f-divergències, són analitzades com a nuclis del refinement. Mostrem com ens aporten una rica varietat d'eficients i altament discriminatòries mesures que són aplicables al rendering en els seus enfocs de pixel-driven (ray-tracing) i object-space (radiositat jeràrquica).<br/><br/>Primerament, basat en la entropia de Shannon, es defineixen un conjunt de mesures de qualitat i contrast del pixel. S'apliquen al supersampling en ray-tracing com a criteris de refinement, obtenint un algorisme nou de sampleig adaptatiu basat en entropia, amb un alt rati de qualitat versus cost. En segon lloc, basat en la entropia generalitzada de Harvda-Charvát-Tsallis, i en la informació mutua generalitzada, es defineixen tres nous criteris de refinament per la radiositat jeràrquica. En correspondencia amb tres enfocs clàssics, es presenten els oracles basats en la informació transportada, el suavitzat de la informació, i la informació mutua, amb resultats molt significatius per aquest darrer. Finalment, tres membres de la familia de les f-divergències de Csiszár's (divergències de Kullback-Leibler, chi-square, and Hellinger) son analitzats com a criteris de refinament mostrant bons resultats tant pel ray-tracing com per la radiositat jeràrquica.
This work is framed within the context of computer graphics starting out from the intersection of three fields: rendering, information theory, and complexity.<br/><br/>Initially, the concept of scene complexity is analysed considering three perspectives from a geometric visibility point of view: complexity at an interior point, complexity of an animation, and complexity of a region. The main focus of this dissertation is the exploration and development of new refinement criteria for the global illumination problem. Information-theoretic measures based on Shannon entropy and Harvda-Charvát-Tsallis generalised entropy, together with f-divergences, are analysed as kernels of refinement. We show how they give us a rich variety of efficient and highly discriminative measures which are applicable to rendering in its pixel-driven (ray-tracing) and object-space (hierarchical radiosity) approaches.<br/><br/>Firstly, based on Shannon entropy, a set of pixel quality and pixel contrast measures are defined. They are applied to supersampling in ray-tracing as refinement criteria, obtaining a new entropy-based adaptive sampling algorithm with a high rate quality versus cost. Secondly, based on Harvda-Charvát-Tsallis generalised entropy, and generalised mutual information, three new refinement criteria are defined for hierarchical radiosity. In correspondence with three classic approaches, oracles based on transported information, information smoothness, and mutual information are presented, with very significant results for the latter. And finally, three members of the family of Csiszár's f-divergences (Kullback-Leibler, chi-square, and Hellinger divergences) are analysed as refinement criteria showing good results for both ray-tracing and hierarchical radiosity.