Small and medium-sized enterprises are the pillars of an economy, and their poor performance has a negative impact on living standards of population and country development. This study analyzes real-life data of 89,851 small and medium-sized enterprises, out of which 295 have declared bankruptcy. The analysis is performed via 27 financial ratios. The study framework combines seven classifications and three resampling and seven feature selection methods. Out of all classification methods applied, CatBoost has achieved the best results for all combinations of resampling and feature selection methods. CatBoost surpassed the results of other classification methods for the area under curve parameter, achieving a value of 99.95%. The application of resampling methods on different classification models has not identified a statistically significant level of improvement in any of the resampling methods. This finding has also been observed for feature selection methods. Based on these findings, we assume that individual resampling and feature selection methods do not improve model performance compared with the original imbalanced sample's results.Our results suggest that, even though the data sample may be significantly imbalanced with a minority of bankrupt companies, most classification algorithms can handle this imbalance and achieve interesting results. Moreover, our findings provide broad practical application for all stakeholders who could need to detect bankrupting companies.