2018
DOI: 10.1140/epjp/i2018-12200-2
|View full text |Cite
|
Sign up to set email alerts
|

Convergence analysis of tau scheme for the fractional reaction-diffusion equation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
17
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 17 publications
(17 citation statements)
references
References 46 publications
0
17
0
Order By: Relevance
“…This indicates that the order of convergence of present method is two orders of magnitude higher than that of the method in [16]. Example We consider the following TFRD equation [16, 22]. 0Dtαufalse(x,tfalse)=uitalicxxfalse(x,tfalse)ufalse(x,tfalse)+ffalse(x,tfalse),false(x,tfalse)false[0,2false]×false[0,1false], subject to the IC ufalse(x,0false)=0, and BCs ufalse(0,tfalse)=0,ufalse(1,tfalse)=0, where ffalse(x,tfalse)=2t2αxfalse(2xfalse)Γfalse(3αfalse)+t2xfalse(2xfalse)+2t2.…”
Section: Numerical Illustrationsmentioning
confidence: 99%
See 1 more Smart Citation
“…This indicates that the order of convergence of present method is two orders of magnitude higher than that of the method in [16]. Example We consider the following TFRD equation [16, 22]. 0Dtαufalse(x,tfalse)=uitalicxxfalse(x,tfalse)ufalse(x,tfalse)+ffalse(x,tfalse),false(x,tfalse)false[0,2false]×false[0,1false], subject to the IC ufalse(x,0false)=0, and BCs ufalse(0,tfalse)=0,ufalse(1,tfalse)=0, where ffalse(x,tfalse)=2t2αxfalse(2xfalse)Γfalse(3αfalse)+t2xfalse(2xfalse)+2t2.…”
Section: Numerical Illustrationsmentioning
confidence: 99%
“…In [21], Wang et al developed an efficient parallel algorithm based on an implicit finite-difference method to solve the fractional reaction-diffusion model (1)- (3). In [22], Rashidinia and Mohammadi described an approximation technique to solve the problem (1)- (3). This method is based on a combination of Legendre tau spectral method and generalized shifted Legendre operational matrix.…”
Section: Introductionmentioning
confidence: 99%
“…Sungu and Demir [21] derived the hybrid generalized differential method and finite difference method (FDM) for solving the TFRD model numerically. Several numerical techniques for the TFRD model are seen in literature; such as explicit FDM [22], H 1 -Galerkin mixed finite element method [23], implicit FDM [24], the explicit-implicit and implicit-explicit method [10], Legendre tau spectral method [25]. Ersoy and Dag [26] solved the FRDM using the exponential cubic B-spline technique.…”
Section: Introductionmentioning
confidence: 99%
“…Most fractional differential equations do not have exact analytical solutions, so for tackling such approximation and numerical schemes must be applied. There are many researchers which have been interested to develop novel numerical methods for fractional partial differential equations (Ren and Wang 2017;Xing and Yan 2018;Zhang and Yang 2018;Sakar et al 2018;Mirzaee and Samadyar 2018) such as explicit finite difference (Shen et al 2011;Sousa 2012;Zhang and Yang 2018;Costa and Pereira 2018), implicit finite difference (Burrage et al 2012;Karatay et al 2011;Sunarto et al 2014), compact finite difference (Cui 2012;Wang and Ren 2019;Wang 2015), finite element (Ford et al 2011;Jiang and Ma 2011;Li and Yang 2017), spline (Arshed 2017;Siddiqi and Arshed 2015;Qiao and Xu 2018), Fourier analysis (Li et al 2018), radial basis functions (Golbabai et al 2019;Ahmadi et al 2017;Dehghan et al 2016;Hosseini et al 2016;Ghehsareh et al 2018), wavelets (Heydari et al 2015;Kargar and Saeedi 2017;Soltani Sarvestani et al 2019), sinc radial basis function (Permoon et al 2016), local radial basis function-generated finite difference (Nikan et al 2020b;Nikan et al 2020a) and spectral methods (Rashidinia and Mohmedi 2018;Yang et al 2018;Zaky 2018a, b;Aghdam et al 2020)…”
Section: Introductionmentioning
confidence: 99%