2017
DOI: 10.5802/aif.3089
|View full text |Cite
|
Sign up to set email alerts
|

Convergence and Counting in Infinite Measure

Abstract: Let Γ be a Kleinian group. i.e. a discrete, torsionless group of isometries of a Hadamard space X of negative, pinched curvature −B 2 ≤ K X ≤ −A 2 < 0, with quotientX = Γ\X. This paper is concerned with two mutually related problems :1) The description of the distribution of the orbits of Γ on X, namely of fine asymptotic properties of the orbital function :This has been the subject of many investigations since Margulis' [27] (see Roblin's book [33] and Babillot's report on [1] for a clear overview). The moti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
35
0
3

Year Published

2018
2018
2021
2021

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 10 publications
(38 citation statements)
references
References 20 publications
0
35
0
3
Order By: Relevance
“…L'existence de telles fonctions T nécessite quelques précautions sur les recollements à effectuer ; nous renvoyons le lecteur à [6,14] pour les détails.…”
Section: Groupes Paraboliques Convergentsunclassified
See 2 more Smart Citations
“…L'existence de telles fonctions T nécessite quelques précautions sur les recollements à effectuer ; nous renvoyons le lecteur à [6,14] pour les détails.…”
Section: Groupes Paraboliques Convergentsunclassified
“…Dans ce paragraphe, nous expliquons comment apparaissent les différentes situations énumérées dans l'énoncé du Théorème 1.1 ainsi que la façon dont chacune d'entre elles est traitée ; nous renvoyons pour les détails des démonstrations aux articles [6,15,17].…”
Section: Sur Le Comportement Asymptotique De N Aγ Aunclassified
See 1 more Smart Citation
“…Let us also point out that Knieper's approach in [22] does not allow to deduce the above characterization in the finite volume case. Although G. Knieper's horospherical measure µ H can be perfectly defined in this context (following §3 of [22]), it can easily be infinite, as well as the Bowen-Margulis measure µ BM : given a finite volume surfacē X with convergent fundamental group Γ and with a cusp whose metric, in horospherical coordinates, writes as A 2 (t)dx 2 + dt 2 , it is not difficult to show that µ H is infinite as soon as [14]). Therefore, all formulas in [22] relating Ent top (X) to the trace of the second fundamental form of unstable horospheres need to be justified in some other way 5 .…”
Section: Introductionmentioning
confidence: 99%
“…Convergent, exotic lattices are constructed by the authors in [16]; also, one can find in [16] some original counting results for the orbital function of in infinite Bowen-Margulis measure, more precise than (b).…”
mentioning
confidence: 99%