1. Introduction and basic concepts. The observation that convergence of real sequences may be defined in terms of limits inferior and limits superior as by means of neighbourhoods in the Euclidean topology leads to the question: for which lattices does order convergence coincide with convergence in the order topology? This problem has been attacked by D. C. Kent [10], A. Gingras [7] and others. We hope to present a satisfactory solution in this paper. Although there are known several characterizations of lattices, with topological order convergence (cf. Propositions 1, 2), an evaluation of these criteria already requires some knowledge of the order topology of the given lattice. In the i present paper, we establish a purely lattice-theoretical description of those lattices for which order convergence is not only topological, but moreover, the lattice operations are continuous. Henceforth, such lattices will be referred to as order-topological lattices. All convergence statements will be formulated in terms of filters rather than nets. For an introduction to convergence functions, the reader may consult D. C. Kents's paper [9]. Let L be any lattice, partially ordered by an order relation <. Furthermore, x = y v z means x = V {y> z}, and x = y A z means x = /\{y, z}. For the sake of convenience, we set