Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The suspension parameters of heavy-duty freight trains can deviate from their initial design values due to material aging and performance degradation. While traditional multibody dynamics simulation models are usually designed for fixed working conditions, it is difficult for them to adequately analyze the safety status of the vehicle–line system in actual operation. To address this issue, this research provides a suspension parameter estimation technique based on CNN-GRU. Firstly, a prototype C80 train was utilized to build a simulation model for multibody dynamics. Secondly, six key suspension parameters for wheel–rail force were selected using the Sobol global sensitivity analysis method. Then, a CNN-GRU proxy model was constructed, with the actually measured wheel–rail forces as a reference. By combining this approach with NSGA-II (Non-dominated Sorting Genetic Algorithm II), the key suspension parameters were calculated. Finally, the estimated parameter values were applied into the vehicle–line coupled multibody dynamical model and validated. The results show that, with the corrected dynamical model, the relative errors of the simulated wheel–rail force are reduced from 9.28%, 6.24% and 18.11% to 7%, 4.52% and 10.44%, corresponding to straight, curve, and long and steep uphill conditions, respectively. The wheel–rail force simulation’s precision is increased, indicating that the proposed method is effective in estimating the suspension parameters for heavy-duty freight trains.
The suspension parameters of heavy-duty freight trains can deviate from their initial design values due to material aging and performance degradation. While traditional multibody dynamics simulation models are usually designed for fixed working conditions, it is difficult for them to adequately analyze the safety status of the vehicle–line system in actual operation. To address this issue, this research provides a suspension parameter estimation technique based on CNN-GRU. Firstly, a prototype C80 train was utilized to build a simulation model for multibody dynamics. Secondly, six key suspension parameters for wheel–rail force were selected using the Sobol global sensitivity analysis method. Then, a CNN-GRU proxy model was constructed, with the actually measured wheel–rail forces as a reference. By combining this approach with NSGA-II (Non-dominated Sorting Genetic Algorithm II), the key suspension parameters were calculated. Finally, the estimated parameter values were applied into the vehicle–line coupled multibody dynamical model and validated. The results show that, with the corrected dynamical model, the relative errors of the simulated wheel–rail force are reduced from 9.28%, 6.24% and 18.11% to 7%, 4.52% and 10.44%, corresponding to straight, curve, and long and steep uphill conditions, respectively. The wheel–rail force simulation’s precision is increased, indicating that the proposed method is effective in estimating the suspension parameters for heavy-duty freight trains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.