Convergence of a sandpile on a triangular lattice under rescaling
Arkadiy Artemovich Aliev,
Nikita Sergeevich Kalinin
Abstract:We present a survey of results on convergence in sandpile models. For a sandpile model on a triangular lattice we prove results similar to the ones known for a square lattice. Namely, consider the sandpile model on the integer points of the plane and put $n$ grains of sand at the origin. Let us begin the process of relaxation: if the number of grains of sand at some vertex $z$ is not less than its valency (in this case we say that the vertex $z$ is unstable), then we move a grain of sand from $z$ to each adjac… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.