Genes influencing opioid use disorder (OUD) biology have been identified via genome-wide association studies (GWAS), gene expression, and network analyses. These discoveries provide opportunities to identifying existing compounds targeting these genes for drug repurposing studies. However, systematically integrating discovery results and identifying relevant available pharmacotherapies for OUD repurposing studies is challenging. To address this, we've constructed a framework that leverages existing results and drug databases to identify candidate pharmacotherapies. For this study, two independent OUD related meta-analyses were used including a GWAS and a differential gene expression (DGE) study of post-mortem human brain. Protein-Protein Interaction (PPI) sub-networks enriched for GWAS risk loci were identified via network analyses. Drug databases Pharos, Open Targets, Therapeutic Target Database (TTD), and DrugBank were queried for clinical status and target selectivity. Cross-omic and drug query results were then integrated to identify candidate compounds. GWAS and DGE analyses revealed 3 and 335 target genes (FDR q<0.05), respectively while network analysis detected 70 genes in 22 enriched PPI networks. Four selection strategies with different statistical thresholds were implemented, which yielded between 72 and 676 genes with statistically significant support and 110 to 683 drugs targeting these genes, respectively. After filtering out less specific compounds or those targeting well-established psychiatric-related receptors (OPRM1 and DRD2), between 2 and 329 approved drugs remained across the four strategies. By leveraging multiple lines of biological evidence and resources, we identified many FDA approved drugs that target genes associated with OUD. This approach a) allows high-throughput querying of OUD-related genes, b) detects OUD-related genes and compounds not identified using a single domain or resource, and c) produces a succinct summary of FDA approved compounds eligible for efficient expert review. Identifying larger pools of candidate pharmacotherapies and summarizing the supporting evidence bridges the gap between discovery and drug repurposing studies.