2021
DOI: 10.3390/sym13071162
|View full text |Cite
|
Sign up to set email alerts
|

Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences

Abstract: Symmetries are important in studying the dynamics of physical systems which in turn are converted to solve equations. Jarratt’s method and its variants have been used extensively for this purpose. That is why in the present study, a unified local convergence analysis is developed of higher order Jarratt-type schemes for equations given on Banach space. Such schemes have been studied on the multidimensional Euclidean space provided that high order derivatives (not appearing on the schemes) exist. In addition, n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance